
CS 152 Lab 1: RISC-V Assembly
Due: 11:59 PM, Feb 4

Overview
For this lab, you will write RISC-V assembly code to add a sequence of numbers together according to some

conditions, and analyze its performance. You will submit both your code and a short report answering some

questions. (See “What to Submit)

RISC-V Emulator
It is suggested to use the provided lightweight command-line RV32I ISA emulator for this lab. The emulator

and its instructions can be found here: https://github.com/sangwoojun/rv32emulator

Please take some time to read the instructions given in the github page, as the emulator has helper

functionality such as breakpoints, single-stepping, and memory dump. It also has many limitations, such as

not allowing comments at the end of lines, and words separated by whitespace instead of commas.

The use of this emulator is simply for your convenience, and you are welcome to use other, more elaborate

emulators such as Spike (https://github.com/riscv/riscv-isa-sim), or Ripes

(https://github.com/mortbopet/Ripes).

Problem Description and Skeleton Code
Skeleton code is provided in the rv32emulator repository, located at: example_questions/reduction.s.

You will finish the implementation of the function labeled “solve”, which takes three arguments via “a0”,

“a1”, and “a2”. The length of the array to add is given in “a0”, and “a1” holds the address of the input array

to add. Register “a2” holds the “mask” array. Values in the input array should only be added if the

corresponding location in the mask array holds a nonzero value.

Once all valid numbers are added, call the “submit” function using jal, giving the total sum via register a0.

Note that you must correctly manage the “ra” register, as calling jal for the submit function will overwrite the

“ra” value set when the “solve” function was called. This is why the “submit” function call is commented out

in the provided version. Simply un-commenting this line without any other changes will cause the code to go

into an infinite loop.

Once the execution reaches the special “Halt and Catch Fire” instruction used to mark the natural end of the

program, it will print the state of the emulated machine at that point, and exit. But before that, the assembly

code in the skeleton code will compare the submitted answer with the pre-calculated correct one, and emit a

return code. The return code will be zero if the answer is correct, and 1 if not.

Figure 1 shows an example execution of the skeleton code with incorrect results. Note the two red rectangles.

The first one shows the “c” command, which tells the emulator to continue execution until a breakpoint is

met, or until the end of the program. The second one shows the return code emitted by the skeleton code,

meaning the submitted answer is incorrect.

https://github.com/sangwoojun/rv32emulator

Figure 1: Example execution with incorrect results.

What to Submit
1. Your modified reduction.s. Please be mindful of the comment that tells you the parts of the code

that can be modified!

2. A short report (pdf, txt, odf, rtf, doc/docx) answering the questions below:

(a) Use the breakpoint functionality described in the repository’s README, and measure how

many instructions were executed inside the “solve” function. How many instructions did it take

to add 16 numbers? Is it good? Can you think of ways to improve this just in software?

Note: Every time a breakpoint is met, it will print the total number of instructions executed so

far, along with the current PC address, and the current line number. See the yellow box in Figure

1. You can set the breakpoint at the first line of “solve”, and “ret”.

(b) Thinking back on the variety of ISA designs we talked about so far, what ISA changes do you

think can improve the numbers we saw in (a)? Please include a short justification. There is no

single correct answer to this question.

